skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Herman, Daniel I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optical frequency combs have enabled distinct advantages in broadband, high-resolution spectroscopy and precision interferometry. However, quantum mechanics ultimately limits the metrological precision achievable with laser frequency combs. Quantum squeezing has led to substantial measurement improvements with continuous wave lasers, but experiments demonstrating metrological advantage with squeezed combs are less developed. Using the Kerr effect in nonlinear optical fiber, a 1-gigahertz frequency comb centered at 1560 nanometers is amplitude-squeezed by >3 decibels (dB) over a 2.5-terahertz bandwidth. Dual-comb interferometry yields mode-resolved spectroscopy of hydrogen sulfide gas with a signal-to-noise ratio nearly 3 dB beyond the shot-noise limit. The quantum noise reduction leads to a twofold quantum speedup in the determination of gas concentration, with implications for high-speed measurements of multiple species in dynamic chemical environments. 
    more » « less
    Free, publicly-accessible full text available February 7, 2026
  2. To better quantify methane emissions resulting from grazing cattle, a controlled methane release at an agricultural site is performed using dual comb spectroscopy. The achieved methane concentration precision is below 10 nmol/mol. The Author(s) Work of the US Government and not subject to copyright. 
    more » « less
  3. null (Ed.)
    Advances in spectroscopy have the potential to improve our understanding of agricultural processes and associated trace gas emissions. We implement field-deployed, open-path dual-comb spectroscopy (DCS) for precise multispecies emissions estimation from livestock. With broad atmospheric dual-comb spectra, we interrogate upwind and downwind paths from pens containing approximately 300 head of cattle, providing time-resolved concentration enhancements and fluxes of CH 4 , NH 3 , CO 2 , and H 2 O. The methane fluxes determined from DCS data and fluxes obtained with a colocated closed-path cavity ring-down spectroscopy gas analyzer agree to within 6%. The NH 3 concentration retrievals have sensitivity of 10 parts per billion and yield corresponding NH3 fluxes with a statistical precision of 8% and low systematic uncertainty. Open-path DCS offers accurate multispecies agricultural gas flux quantification without external calibration and is easily extended to larger agricultural systems where point-sampling-based approaches are insufficient, presenting opportunities for field-scale biogeochemical studies and ecological monitoring. 
    more » « less